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1. Introduction

Multi-dimensional, time-dependent flows are generally
considered as problems which can be analyzed numerically only by
high-speed, large-scale computers, because of the large number of
grid points necessary to achieve the required degree of accuracy.
The need is emphasized when viscous effects have to be taken into
account [1]. There is no doubt, however, that the inclusion of
viscous effects is a must to achieve physical reality in certain
problems. To this category belong all flows involving separa-
tion, plume formation, shock-boundary layer interaction with
upstream propagation of signals in a generally supersonic flow,
self-sustained flutter, etc.

The use of appropriate numerical techniques reduces the
need for a large number of grid points and allows a mini-computer
to be used for the analysis. After experimenting with a certain
number of such problems and finding that the above statement can
be supported by concrete evidence, I consider proper to report
the techniques in full detail. Two-dimensional or axi-symmetric,
time-dependent, viscous flow problems at high Reynolds numbers
will be considered.

We will discuss the basic points which make the technique
efficient, viz.:

a) a proper formulation of the equations of motion,

b) the use of mappings,

c¢) the stretching of coordinates,

d) the discretization of the equations,

e) the treatment of imbedded shocks.

2. Equations of motion

In vector form, the equations of motion for a viscous
flow (Navier-Stokes equations), assuming that the viscosity, u ,
is a constant, are:
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Equations of motion
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where p, p, S and © are the thermodynamical parameters density,
pressure, entropy and temperature, respectively. In the same
equations, 3 is the velocity vector, t is the time, x 1is the
coefficient of heat conduction, and ¢ is the dissipation term.
The latter is a well-known non-negative quadratic form depending
on the space derivatives of the velocity components. Its expres-
sions for the various orthogonal coordinate systems considered
in the present Report will be given later on. If pressures, den-
sities and lengths are expressed in terms of reference values,

p y P and x , respectively, corresponding units of veloci-
ref ref ref
ty, time and temperature are defined as
1/2 2
= / i = 5 9 = /R 2
uref (pref pref ref xref‘/uref ref uref @)

where R is the gas constant.

A Reynolds number and a Prandtl number can be defined as

R = u X /u, PRN=
e Dref ref ref " & cpu/r

where ¢ is the specific heat at constant pressure. Finally, let
the unig entropy be ¢ (the specific heat at constant volume). The
equations of motion can thus be written in the form:
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Equations of motion

In an inviscid flow, the terms here affected by 1/R do
not appear. For a proper numerical analysis of such flows, Shose
mechanics is governed by the propagation of sound waves and by
the convection of entropy along particle paths, it is convenient
to consider the legarithm of pressure, P, instead of the density,
as an unknown, and to make use of the equation of state for a
perfect gas:

S 44 9 y=1IP (4)

so that the equations of motion for an inviscid flow (Euler's
equations) can be written in the form:

%E + YV.V =0
DV
— s+9yP =0 (5)
t
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If the flow is viscous, the basic phenomena of wave pro-
pagation are still present, although modified by the concurrent
effects of diffusion. Therefore, it would not be advisable to
drop the basic integration techniques for convective terms; we
will consequently write the Navier-Stokes equations in the form:

11 + V.VP + yv.v = =
at
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(where the material derivatives have been replaced by partial
derivatives, as costumary, and q is the modulus of the velocity).
In what follows, the density will no longer be used explicitly,
and p will be redefined in Eq. (8).



Conformal mapping

3. Conformal mapping

We will consider two types of flows, both depending on
two space variables: two-dimensional (plane) flows and axi-

symmetric flows. Two Cartesian coordinates, x and y, will be
used for two-dimensional flows. the same symbols will be used
for the axial and radial coordinate, respectively, in any meri-
dional plane of an axi-symmetric flow. The (x,y)-plane will be
called the physical plane.

In addition, we will introduce a complex variable
z=x+1y )

and assume that, in general, the physical plane will be confor-
mally mapped onto an auxiliary plane, described in terms of a
complex variable ¢z,

g =g+in=pe (8)

Obviously, if no mapping is needed, all the formulas below are
valid, provided that ¢ = z, that is, § = x and n = y. The map-
ping function must be chosen in such a way that the contours of
the flow field are as close as possible to g=constant and
n=constant lines, or to p=constant and 8=constant lines [2]. Let

dg iw
s == & G
g 4 e (9)
G -i
CZ+1 8=z "=e¢g % (10)
g
We will begin with the case in which § and n are wused.
Let
1dlog g
g = 2 i
’ g dz ’1 ~ ¢2 e

Let also 1, j be the unit vectors tangent to the n = constant
line and to the § = constant line in the z-plane, and u and v be

- 0 =




Conformal mapping

the corresponding velocity components, respectively, so that
V=ufas+v 3 (13)

It is convenient to note that

£ =G¢, £ =G3, n =-G3, n =G¢ (14)
X y X y
x =£/G, x ==-3/G, y =3/G, y =£/G (15)
12 n g n
2 2 2 2 2 2
EisE =G, x +x =1/G (16)
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If T and I are the unit vectors parallel to the x- and y-axis,
respectively, and

V=UTIT+V3 (18)

it follows that
f.tag . £.8=80,0 3.1==8 , 3.3=¢ (19)
Uzuf~-v3, V=uB+ve€, u=ig+V3, v=-=U3+V¢ (20)

For any element ds in space, we have

2R m 22 2
d52 = d¢ /G +dn /G +dx3 (21)

if x is the third Cartesian coordinate, in a two-dimensional
problem, and

2 2 2 g 2 2 2
ds = df /G +dn /G +y dx3 (22)
if x_ is the angular coordinate in an axi-symmetric problem.

Consequently, in a two-dimensional problem, the basic vector
operators in (1) can be expressed as follows:

VP=G(P f+P J) (23)
3 n




Conformal mapping
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In an axi-symmetric problem, (23), (24), (25) and (28)
still hold, but (26) and (27) must be replaced by
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From now on, we will follow the common practice of using a multi-
plier, j, which is equal to zero for two-dimensional flows and to
1 for axi-symmetric flows. We will denote by @ the only non-zero
component of the curl of V (24):

Q =G (vg-un-vox-uoz) (33)
and by A the divergence of v (26) or (30):
A =e

e s 3

11+e22+e33. 33 (34)

< |<

and introduce the symbols
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Conformal mapping

D = G(vo1+u¢2) SiEE G(qu-u¢1) + e33 (35)

It is easy to see that, in terms of the independent variables g
and n, the Navier-Stokes equations are:

DS
P +G(UP + vP ) + yG(u + v ) B =i
£ AR s e i S
; 4 L -]
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& 3 n g BTE WY DRe
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t g n n SN ey pRe
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t 13 n P e
r
with ¢ defined by (28) and
2 2 G
Ve =G (e +0 )+j— (36 +26 ) (37
E& n y € n

If the basic variables in the g-plane are p and 8, we
will define 1 and j as the unit vectors tangent to the 8=constant
lines and p=constant lines, respectively, and the velocity com-
ponents, u and v, will be defined accordingly, so that (13) still
holds. Practically, all equations from (12) through (37) must be
changed, as follows.

_gdlogg
¢ = g dan = ¢1 + i¢2 (38)
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Conformal mapping
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In this case, the Navier-Stokes equations become:
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Conformal mapping

with ¢ defined by (28) and

2 e 3+0 2/
2 P

G 1 [}
70 = — (0 408 +— 0 ) + jG (56)
P o pp o 98 y

4. Computational plane

The g~-plane, however, is not the computational plane. 1In
most instances (and particularly for viscous flows, when boundary
layers and shear layers are present), grid lines must concentrate
in the regions of highest gradients. An efficient way for
achieving an uneven partition of grid 1lines consists of using
stretching functions, which essentially define a correspondence
between n (or p) and a new variable, X, and between § (or 8) and
a new variable, Y. The boundaries of the region to be computed
in the physical plane should be made to correspond to the X=0,
X=1 1lines and to the Y=0, Y=1 lines, respectively. The computa-
tion is performed in the (X, Y) plane, using a rectangular grid
with evenly spaced lines; it must be noted, however, that
X=constant lines and Y=constant lines on the physical plane are
generally not orthogonal to each other, since the boundaries are
not necessarily represented by £=constant 1lines and n=constant
lines, or by p=constant lines and 8=constant lines.

WS will consider here two examples. In the first, the
basic variables in the g-plane are § and n; two boundaries are
defined by constant values of § and two boundaries are defined by
values of n which depend on £ and t, as well. It will be neces-
sary, thus, to define Y not only as a function of n but of £ and
t, and to distinguish carefully between the time, t, in the phy-
sical plane (or in the z-plane) and the time, T, in the computa-
tional plane. Therefore, we will write:

X = X(8)

~<
"

Y(g,n,t) (57)




Computational plane

Letting
a =GuX , a =yGX , b =Y +Gu¥ +GvY , b = yGY
1 1l t 12
P ¢ . . D Us8)
s yGY. ., @ =GeX , h_= GoY , b = GoY
g11 ¥ £ 21 £ 2 £ 21 n
and
2
F = [(y=1)0 + v 81/(pR )
P e
r (59)
=yE - F
c1 Y
4 |4
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P G (60)
o _4 3
c. = =uD -—1=Ga +Ga +j — qal
3 PR 3" & J y
e
the equations of motion are recast in the form:
P P =
PT+a11 X*b11 Y+a12ux+g11uy+b12vY + c1 0
P +h P =0
B A TR S PR TR b i e s

v_+b +b P +c =0
M AT SR P Al PR AR

ST+a11Sx+b11SY =F
In the second example, the basic variables in the g-plane
are p and 9; two boundaries are defined by constant values of ¢
and two boundaries are defined by values of p which depend on ¢
and ¢t. It will be necessary, thus, to define X not only as a
function of p but of 8 and t; therefore, we will write:

X

X(p,0,t)

<
1]

Y(o) (62)
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Computational plane

T =t
Letting
311 = Xt+GuXp+GvXe/p - a12 = yGXp . b1] = Ger/p
b12 = yGYe/p . 312 & yGXe/p ’ 821 = Gexp (63)

h = GeX b = GeY /
3 a'? * Pay il

and F, e as above in (59) and (60), respectively, and

oG U4 Z
=yD = —[A -2 /p-3—
B = ¥ oR [3 e p =] Gy ]
e
4
oG _4 ) )
¢ = =uD = —{[=A /p+2 + j ]
3 PR 38 p Gy
the equations of motion are recast in the form:
P P P b v =0
AR EE S PR S Pl SR PANALIPAS GRS
u +a__u_+b, u_+a__P_+c_=0
G D ) S e [ G
(65)

b P_+h_P =0
VT+a11VX+b11VY+ 21 Y+ 3 x+c3

ST+a‘”Sx+b1 1SY S E
It is easy to see that the first three equations (61) and the
first three equations (65) have the same form as Equations (23)
of [3]. The integration procedure explained in [3] can be ap-
plied. We expect the integration technique to provide a very
good estimate of convection and wave-propagation effects which
are common to inviscid and viscous flows.

w 1] =




Rigid boundaries

5. Rigid boundaries

For a viscous flow, the velocity at a rigid boundary is
assumed to vanish. There are no difficulties, thus, in the
determination of u and v. Pressure and entropy require more
care. We consider here the case of an isothermal wall; the tem-
perature, 6 is a prescribed constant. Because of (4), P and S are
linearly related; therefore,

DT o
and consequently, the first of (36) and the first of (55) must be

replaced by

Pt + G(uP +vP ) + G(u +v ) = 0 (66)
and ¢ E o
v 1
P +#GUP +—P )+G(u +—v)=0 (67)
t p o 6 p p 9

respectively, having taken into account that, in both cases, E
vanishes identically. The equations to be solved are still (61)

and (65), provided that a, b12, 844 and 312 are divided by y
and ¢, is set equal to zero.

1

Cnce the pressure has been determined, S is obtained from
(4). Therefore, S is not calculated directly as a result of dis-
sipation and heat transfer in the flow, because the condition of
constant wall temperature implies some external action, and (4)

gives us the final outcome of such action and the local variation
of pressure.

6. Integration procedure

The equations of motion (61) or (65) are integrated fol-
lowing the general guidelines of Section 6 in [3]. We define

X
C=g u_+c¢_ , Cz-bﬂuY + h2PY + c2

B




Integration procedure

6
! ¢t h P -
= v . s
17812 Pl S b M
After finding the characteristic slopes, f, x: (i=1,2) from
i Bk b
17 3 117 21
=0 ; =0 (69)
i b b -
P Pt 12 17
and letting
A v
A b S 1174
g IR S AY Y
2™ 2™
(70)
a, b,
DX ¥ 13, DY - ij
T e e R, Y Y
) X <%
2™ 5
the equations to be integrated are:
X X X X X X X
P =A =0
Pr A P82 Pxo + Dy iy Uy + € i)
Dx (xxP xxP ) + A xx -A xxu Cx =0
Y * T ™ A R Ut A CHR S
and
AT R A T T T w L T e
O S B ar i - B T Wt b S R T -
e G TR L ¢t 2o
- v s
I R o e L L LA e S Al A R
with
: X
P.sP
T T + PT (73)

For discretization, the space derivatives are classified
into three categories: (i) the ones explicitly appearing in (71)
and (72), (ii) the ones explicitly appearing in (68), and (iii)
the ones appearing in (59), (60) and (64). The derivatives of
the first category are discretized according to the rules (14)

i} =




Integration procedure

and (15) of [3]; the derivatives of the second category according
to the rules (34) and (35) of [3]; an the derivatives of the
third category are approximated by ordinary centered differences,
because the physical nature of the terms which they affect is
diffusion. Few exceptions to the general rules are necessary for
points on rigid boundaries or next to rigid boundaries. For
points on rigid boundaries, the alternate two-point-three-point
approximation is always taken using points inside the flow field.
For points next to rigid boundaries, if use of a point located
behind the wall were required in a three-point approximation, the
latter is substituted by a two-point formula.

T. Numerical treatment of shocks

Shocks are generally present in a compressible flow
field, either as boundaries or imbedded in the flow. In both
cases, they can be treated numerically in the general framework
of the computational technique described in the previous Sec-
tions. We begin with some general considerations.

Let N and T be the unit vector normal and tangential to a
shock at any of its points, Q, respectively:

R = N11 + sz " T = -Nzi + N1J (74)
& the shock velocity,

R (75)

and U, V the velocity components along N and %, respectively:

j =4

= uN1+vN2 u = EN1-§N2
(76)
v = -uNz-wN1 v = GN2+§N1

The N-component of the velocity relative to the shock is

= il -




Numerical treatment of shocks

urel =u-W 77)

The relative normal Mach number on the low pressure side of the
shock is

a2
2 irel
Mn1re1 : -]
bt (78)
The Rankine-Hugoniot conditions are:
2 M2 1
i 1r11r°e1“Y+
P2 = P1 + 1n 1
-+
s (79)
(¢}
¥, =1 o 2
u = * T
2rel y+1 1rel y+1 u
rel
We will need the derivatives of P2 and u2rel with respect
to W:
3P 4y
B Yirel
aw 2
1rel-(Y-1)e1
(80)
au ]
rel _ _y=1 2 "1
W B Y+1 y+1 .2
rel

Let us assume that the shock is oriented in the general
direction of the X=constant lines; therefore, it can be defined
by its intersections, X , with Y=constant lines. At each inter-

s
section, we consider two points, one on the low-pressure side and
the other on the high-pressure side. The point on the 1low-

pressure side must be updated by using information proceeding
from that side only. The point on the high-pressure side must be
updated by using information from both sides. The information
proceeding from the low-pressure side must satisfy the Rankine-
Hugoniot conditions; the information proceeding from the high-
pressure side is carried to the shock along a characteristic.
The acceleration of the shock results from the compatibility of

- 18 =




Numerical treatment of shocks

the different information. To obtain the characteristic equa-
ticn, we should rewrite the equations cof motion in a frame rela-
tive to the moving shock, where the Y-coordinate of the shock is
unchanged but its X-coordinate follows the shock in its motion.
Therefore, we will introduce a new set of coordinates,

X =X -x (Y|T)

S
c =Y (81)
=T

and rewrite (61) and (65) in the form:

P+a P +b_ P +a_u +b__v +y v +c_ =0
T 11 e € 1

11 2¢ 18 12 %
u +a_,.u +b, u +a__P +h P +c_=0
11 Tlag 21 2 2
i " LA (82)
v v +b__v +b__P P =0
1+a11 x+ 1 e+ 21 e+n3 x+c3
S +a S +# S =F
e 1
where
= -b_ X =X ' = -g X . = -h X
18P sy e 0 %™ B Ky 0 %Py s

=g . =b. X _ , =h_-b_ X
V1278127108 sy + 373 Ky

A characteristic equation may now be obtained, using y and t as
basic independent variables:

(a11-x)(PT+XPX)-012(ur+xux)-y12(v1+xvx)+R =0 (84)

where A is the solution of the equation

Fga™ 8y Py
012 011—X 0 = 0 (85)
Y 0 a_ _=A

- 16 =




Numerical treatment of shocks

that is,
1/2
A = *( )
%11 " *12%21712"3
and R comprises all the remaining terms.
Note now that
= yGUN_ , = yGuN
oo T Wy v Hya = 0N
= GewN_, = GevN
a1 it P .
where
( 2 2 )1/2
e W TS
vV = YG
Therefore,

a. u+ v, v = yGul

12 12
= yGvd -yG N N
a12uT + 712vt Y vur vGv (u 11+v 21)
u + v = yGuu
Yo T T2 Y

Instead of (84) we can write:
(e« =A)(P +AP )=yGv(l +xu )+R_ =0
11 % X i X 1

where

= R+yG N =-vN
R1 i 1t b 21)

A further simplification is obtained by observing that

i ( )1/2

a, = a,. Q.. +Y. N

3 11 - 12721 '12'3 |
yGv yGv Y

because of (87) and (88), so that (90) can be written
form:

- 17 =
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(87)

(88)

(89)

(90)

(91)

in the



Numerical treatment ¢f snocks

£2 (P +AP )+0 +AU +R_ = 0 (92)
CAER N ENE S SRR
The values of P and U, obtained by integrating the
Navier-Stokes equationsT (82) Tusing information from the high-
pressure side of the shock only, must satisfy (92). On the other
hand, the exact solution of the flow problem in the presence of
the shock, which accounts also for the information from the low-
pressure side and the Rankine-Hugoniot conditions, must satisfy
(92) as well. Therefore, if we write (92) twice, once for the
t-derivatives as obtained from the Navier-Stokes equations (that
is, using for the shock point the same integration. procedure
which is applied to other points) and again for the exact
t-derivatives and we subtract one equation from the other, the
simple result is obtained:
(NS) 5 = (NSD
- —

a
+—(P -P ) + U
YT T T T

0 (93)

where the derivatives obtained from the Navier-Stokes equations
are labeled (NS) and the exact derivatives are unlabeled.

The latter derivatives can obviously be expressed in the

form:
3P u
2 PRV
P =P#% 4 —W , u =zu* 4+ —W (94)
T T W T T T W T

where f* is a derivative computed considering W as a constant.
T
The acceleration of the shock is thus obtained:
(NS) ~(NS) .
u

*a(P -P®) ey ( -u*)
T T T T

T ta 3P_/3W + y au_/aw
k 2 i (95)

Since both the starred derivatives and the derivatives indicated
by (NS) are computed using the same initial values, (95) can be
replaced by

(NS) (NS)
-p* U %
WAt s ta(P P®)+y (U u*)

T ta 3P_/aW au_/aw
x ke s A b

(96)
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Numerical treatment of shocks

where P* and U* are the values on the high-pressure side of the
shock obtained from updated values on the low-pressure side by
applying the Rankine-Hugoniot conditions to a shock whose
geometry has been updated but whose velocities, W, are still the
same as at the beginning of the integration step. This result
(4] 1is remarkable since it provides an extremely simple method
for calculating the shock acceleration although it relies on the
same basic concepts which have been shown to be necessary for a
proper, physically correct, handling of shocks [5].

We will now consider first the case where the shock is a
boundary, moving into a gas at rest, and then the case of an im-
bedded shock.

In the case of a shock moving into a gas at rest, let us
assume that the shock is a right boundary of the computational
field. It is, thus, defined by X=1; in this case, x, € and =t
coincide with X, Y and T, respectively and a__=a 1’ uz =&y
c12=a12. 712=g , n_.=h_. The characteristic reaching the shock
from the high-pressure side is a right-running characteristic,
and in the preceding equations, whereas a * appears, the upper
sign Tust be used._ Note én addition that ﬁ1=0 and V1=0; there-
fore, u1re1:-w and Mn1rel=w /Y. In this case, obviously, the
low-pressure side values are known without any need for comput-
ing; the (NS)-values on the high-pressure side are obtained to-
gether with and using the same procedure as for interior grid

points.

For an imbedded shock, whose location does not generally

coincide with a grid line, we use a simplified procedure to ob-
tain the values at the shock on the low-pressure side and the

(NS) values on the high-pressure side. On the low-pressure side,
instead of integrating (82) (which would require a special, and
not easy, redefinition of approximations for the x- and
c-derivatives), we simply assume that the values at the shock can
be extrapolated from che two adjacent grid points on the same
y=constant line, both at the end of the predictor and the correc-
tor 1level. On the high-pressure side, we assume that the T-
derivatives on the shock are equal to the T-derivatives at the
grid point next to the shock on the same Y=constant line. Note,
however, that
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f =2£ «f X (97)

for any function f. The values of f_ at the shock are assumed to
be the same as at the next grid point on the hight-pressure side,
on the same Y=constant line. The values of f are approximated
as follows: 4

1-€
fxs[fA-fs e (fB-fs)]/AX (98)

where e=(X -XS)/AX and A is the grid point next to the shock on
the high-pressure side and B is the next grid point. This formu-
la provides a smooth transition when the shock crosses an
X=constant line.

For an imbedded shock, thus, the calculation proceeds as
follows: In the predictor stage, after updating all grid points,
the low-pressure side of the shock is obtained by extrapolation
and (97) is also applied to P, u, v and S. The values on the
high-pressure side are updated by adding f At to th? 3n1t1al
values of f; the values so obtained are the predicted f The
predicted f* are obtained by applying (79) to the predicted
values on the low-pressure side. Then, (96) is applied and W is
temporarily updated, but 1its original value is retained in
storage. The geometry of the shock is updated, considering that,
in virtue of (75), (14) and (19),

= G W/N
Est 1 (99)

or, using (41) in lieu of (14),

= G W/N
ost G W/ 3 (100)

and using the approximations:

g (t+At) = ¢ (t)+€ At+‘£
s s tt
(101)

p (t+At) p (t)+p At+ 0
S K]

2 tt

where the second derivatives are obtained by differentiating (99)
or (100). In the corrector stage, the procedure outlined above
for the predictor stage is repeated through the application of
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(97). The updating of the values on the high-pressure side is
obtained by adding

1e _gloreddy,
2 T T
to the predicted values. The corrected f* are obtained by apply-
ing (79) to the corrected values on the low-pressure side, with
the original value of W. Then, (96) is applied again and W is
definitively updated. The Rankine-Hugoniot conditions (79) are
applied once more to the corrected values on the low-pressure
side using the final value of W, to obtain the final values on
the high-pressure side. The entropy is also computed from

S =38 P -P_- u 1
i y1ln(u / (102)

2 rel u2re1)

At this stage, it is convenient to correct the values at

the grid point next to the shock on the high-pressure side.

Pressure and velocity components are interpolated from the values

at the shock and the following grid point. Entropy is also in-
terpolated considering that it is carried along a streamline.

To illustrate the technique, let us consider the follow-
ing example. A duct (either two-dimensional or axisymmetric) has

its centerline on the x-axis; its lower wall (AC) is defined as
the image, in the z-plane, of a straight line, e:eo. in the

¢z-plane (Fig. 1). The mapping is defined by

2 2 2
z 2 (ro/ﬁ)[(zz-1/za)/2 - logz2 - ir]

(103)

z 1/z_ = 2B 1753

2+ 2 (g + 1/z)
where ro is an arbitrary parameter, and B is determined to assure
correspondence between =1 and 2z=-i. The section of the duct at
x=0 (AB) is defined by p =1. We assume that the duct itself is
fitted to an extremely long shock tube in which, by means of an
ideal device, the flow behind the shock is made to arrive to the
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exit without a sizeable boundary layer and practically uniform

Eig. 1

across, save for the vanishing of the velocity on the wall. At
t=0, the shock (which we will call the precursor shock) is just
out of the shock tube and into the duct. At every value of t, we
will define its position as

c = p(o,t) (104)

and we will compute the flow in the duct (that is, between
p=1 and p=c and between 6=6 and 6=v/2) assuming that the super-
sonic flow at the entrance o? the duct remains unchanged.

The computational variables X, Yand T are defined 1in
terms of p, 8 and t as follows:

T tanh(a(Y-1)]
et % e s E

& =l e
2 o tanh a 2
ot ey, T = 1]X (105)
t=T
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The calculation is started at a small, positive value of
t, when the precursor shock has already moved from AB. Initial-
ly, the shock is assumed to lie on a p=constant line (with the
value of the constant, ¢ , slightly greater than 1), and all
parameters pertinent to the shock are assumed equal to their
values at t=0 (since the flow behind the shock is uniform, the
shock Mach number defines pressure, velocity and entropy). Uni-
form flow is assumed between AB and the shock, if the gas is
inviscid. T:e velocity component, v is made equal to zero
throughout. Initially, the computational region is divided into
two strips only along the X-axis. Along the Y-axis we consider
as many partitions as necessary to provide sufficient resolution.
Since the flow is viscous, we need some modifications to the ini-
tial conditions near the wall, to account for the vanishing of
the velocity at the wall. The precursor shock cannot reach the
wall; the perturbation front, elsewhere in the form of a shock,
becomes a characteristic at the wall, somewhat smeared out by
viscous diffusion. Therefore, on the initial p=c line which
represents the shock, P is assumed equal to zero at the wall. On
the next wall point, P is taken equal to one half of its value
behind the shock. The wall temperature is assumed equal to 1 at
any time. The entropy is defined accordingly. The u-velocity
component is taken equal to one half of its value behind the
shock along the second 8=constant line from the wall. The calcu-
lation proceeds as detailed above. We note that the centerline
is computed as a symmetry line, not as a rigid wall. For computa-

tional purposes, the shock geometry is prolonged to the wall with
a constant value of ¢, and the wall point is computed as any in-

terior, shockless point, taking advantage of the fact that the
state of the gas in front of the perturbed region is known. The
same procedure is automatically applied to any other point on the
perturbation front, if the shock happens to lose its strength
completely.

As the calculation proceeds, the number of grid intervals

in the X-direction is doubled every time (c-1) on the centerline
exceeds 1.4 times its initial value or the value it had at the
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previous doubling, until the total number of intervals is 16.

Certain features of the flow are common to the inviscid
and viscous models. An expansion appears from the beginning near
the inlet of the duct; the region of maximum expansion moves from
left to right, but at a slower speed than the precursor shock.
Consequently, even with the precursor shock losing strength, the
pressure behind it remains higher than the lowest pressure al-
ready attained along the duct. The particles are accelerated and
then decelerated again. A compression wave appears, which tends
to steepen up, as every compression wave does, and another shock
results eventually.

In the presence of viscosity, the recompression wave and
the secondary shock strongly interact with the boundary layer in
the process of formation. The latter thickens and separates very
soon. Between the main stream and the wall, a wide dead-water
region appears, where the pressure tends to equalize the ambient
pressure (in front of the precursor shock). When the separated
flow becomes steady, it is what is commonly defined as a plume.
From the separation point on, the plume is insensitive to the
wall geometry and the flow inside it 1is essentially inviscid.
The results of the calculation of a steady, inviscid flow in a
plume can be used to judge whether the viscous calculation ap-
proaches its theoretical asymptote, and how well.

In the present example, a=2, and the sector between 0=9

o)
and 6=v/2 is divided into 16 intervals. Consequently, we obtain
a fair accumulation of grid lines near the wall, and still work

with a reasonably small number of lines. It is clear, however,
that the resolution is well below the limits which are usually
recommended for a good description of Reynolds number effects;
the lack of an adequate resolution is particularly felt in the
vicinity of the plume shear layer. Nevertheless, the present
results are very encouraging, just because very good qualitative
results are obtained with such a coarse mesh.

Based on realistic values of the inner diameter of the shock tube
(25.4 mm), of the kinematic viscosity of air (.0016 m /sec) and
of the speed of sound of the gas at rest (360 m/sec), R turns
out to be of the order of 2500. For such a Reynolds numger, the
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resolution of the grid near the wall cannot provide accurate de-
tails of the boundary layer, such as needed, for example, to com-
pute the skin friction, but it is sufficient to furnish an ade-
quate picture of the layer in the general context of the flow.

The Prandtl number is taken equal to 1, and y equal to
1.4, The values of ro and eo are 2.2603 and 1.2, respectively.
The temperature at the wall is assumed to be equal to 1, that is,
to the temperature in the gas at rest. The value of P at the in-
let is 1.6487. Consistent values of u and S are u=1.6551,
S=0.1702. The Mach number at the inlet is barely supersonic,
M=1.040. The flow is assumed to be two-dimensional.

The evolution of the flow i's shown in Figs. 2 through 13.
In Figs. 2 through 8, isobars are plotted. The left vertical
line is the inlet cross-section, the lower curved 1line 1is the
wall of the duct, the upper horizontal line is the duct center-
line (on which notches indicate multiples of the unit 1length);
and the right boundary is the precursor shock. The line marked
with O is the sonic line. Step 800 is typical of the first phase
of evolution, showing an accented minimum of pressure on the
wall; velocity vectors drawn for that step indicate the beginning
of recirculation in {the boundary layer around the region of
minimum pressure (Fig. 9). at step 1200, the minimum pressure
has moved to the centerline, and a steepening up of the pressure,
all across the duct, is evident. At step 1400, an imbedded shock
is fitted (marked in the figure by +). The initial fitting of
the shock is rather arbitrary, but such arbitrariness is not res-

-

trictive. In general, an imbedded shock is fitted on any
f8=constant line, in the middle of an interval where the differ-
ence in P exceeds 0.6, as it is suppressed if its normal Mach
number becomes less than 1 or if locally the shock stretches over
more than two X-intervals over a single Y-interval.

Note that the computational technique allows the shock to
end inside the flow field, and that isobars between the end-point
of the shock and the wall shape up in a way which is, at least
qualitatively, typical of shock-boundary-layer interactions.
Velocity vectors at this step (Fig. 10) show a pronounced recir-

-5 -




An example

culation bubble.

At step 2400, the flow field is mostly subsonic; the
supersonic flow is confined to a jet-like region (see Fig. 11,
where lines of constant Mach number are shown, and the veocity
vectors in Fig. 12).

At step 3400 the loss of accuracy consequent to 1loss of
resolution is evident; the jet region, where the imbedded shock
is still present, is covered by three mesh intervals only. The
Mach number distribution (Fig. 13) has the correct trend, but the
transversal gradient is spread out too widely. Nevertheless,
note the formation of a transversal pressure gradient, very simi-
lar to the pattern found in the isobars computed for a steady
plume originated by the same duct, with separation taking place
exactly where the pressure at the wall equals the ambient pres-
sure (Fig. 14).

To conclude, we show an impressive picture of streamlines
at this step in Fig. 15.
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